Графен оказался способен выдерживать высокое давление

Лист графена оказывается тем прочнее, чем меньше поры в его подложке. Это сложно назвать неожиданностью, но никто еще не измерял этот эффект в числах.

Лист графена, состоящий из кристаллической решетки толщиной в один атом, может показаться очень хрупким, однако инженерам Массачусетского технологического института удалось обнаружить условия, при выполнении которых ультратонкий материал исключительно прочен, оставаясь нетронутым при приложении давления, по меньшей мере, 100 атмосфер. Это примерно в 20 раз больше давления в водопроводном кране у вас на кухне.

Исследователи обнаружили, что ключевым для высокой прочности является место соединения графена с пористой подложкой. Точнее, графен держит нагрузку тем лучше, чем меньше поры, расположенные под ним. Эта закономерность имеет понятную аналогию в макромире — чем длиннее мост, тем, при прочих равных условиях, меньше его прочность. Но в случае предмета толщиной в один атом, эта закономерность требовала проверки или, как минимум, уточнения величин.

Исследователи выращивали листы графена, используя технологию, называемую химическим осаждением из паровой фазы, затем помещали отдельные слои графена на тонкие листы пористого поликарбоната. Каждый лист подложки был изготовлен с порами определенного размера в диапазоне от 30 нанометров до 3 микрон в диаметре.
Исследователи сосредоточили внимание на том, что они назвали «микромембранами» — на областях графена, которые находились непосредственно над порами. Команда поместила графено-поликарбонатные мембраны в камеру, в верхнюю половину которой под давлением закачивался аргон. Выяснилось, что графен, размещенный над порами, имеющими диаметр 200 нанометров, выдерживал давление 100 атмосфер. Иными словами, пленочка из одноатомного углерода держала 100 атмосфер над дыркой, диаметр которой примерно на три порядка превышал толщину самой пленки. Напомним, что диаметр атома углерода составляет примерно 0.154 нм.

Графеновая мембрана под электронным микроскопом, Слева показана мембрана после испытания на разрыв при 100 бар. Неудачные микромембраны (темные черные области) приурочены к морщинам в графене. Справа два увеличенных изображения графеновых мембран перед (сверху) и после испытания на разрыв при перепаде давления 30 бар. Изображения показывает, что разрушение мембраны связано с внутренними дефектами вдоль морщин. Фото: Массачусетский технологический институт
Графеновая мембрана под электронным микроскопом, Слева показана мембрана после испытания на разрыв при 100 бар. Неудачные микромембраны (темные черные области) приурочены к морщинам в графене. Справа два увеличенных изображения графеновых мембран перед (сверху) и после испытания на разрыв при перепаде давления 30 бар. Изображения показывает, что разрушение мембраны связано с внутренними дефектами вдоль морщин. Фото: Массачусетский технологический институт

Рохит Карник (Rohit Karnik), доцент факультета машиностроения Массачусетского технологического института, говорит, что результаты команды, представленные в журнале Nano Letters, могут послужить для создания жестких мембран на основе графена, особенно для таких целей, как опреснение, где для эффективного удаления соли из морской воды фильтрационные мембраны должны выдерживать высокое давление.

«Мы показываем здесь, что графен способен повысить пределы давления для мембран, — говорит Карник — Если графеновые мембраны могут использоваться для опреснения при высоком давлении, то это открывает много интересных возможностей для энергосберегающего опреснения при высокой солености».

Существующие в настоящее время мембраны опресняют воду с помощью обратного осмоса, процесса, при котором соленая вода под давлением нагнетается с одной стороны мембраны, не пропускающей соль и другие «лишние» молекулы. Предельное давление для многих коммерческих мембран колеблется от 50 до 80 атмосфер, при его превышении конструкция быстро деградирует. Повышение предельного давления до 100 атмосфер или выше означает общий рост производительности опреснения.

«Совершенно очевидно, что недостаток источников воды в обозримом будущем ликвидирован не будет, и опреснение станет основным источником пресной воды», — говорит Карник. Обратный осмос является одним из наиболее эффективных методов опреснения с точки зрения энергии. Если бы мембраны могли работать при более высоких давлениях, это обеспечило бы лучшие показатели при высокой энергетической эффективности».

«Мы показываем, что графен может выдерживать высокое давление, — говорит ведущий автор Люда Ванг . Другая часть эксперимента, которую еще предстоит провести, даст ответ на вопрос, сможем ли мы опреснить воду».

Информация с сайта: https://naked-science.ru/article/sci/grafen-okazalsya-sposoben-vyderzhivat

Leave a Comment

Ваш e-mail не будет опубликован. Обязательные поля помечены *